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A classical problem in elasticity theory involves an inhomogeneity embedded in a material of given stress
and shear moduli. The inhomogeneity is a region of arbitrary shape whose stress and shear moduli differ from
those of the surrounding medium. In this paper we present a semianalytic method for finding the stress tensor
for an infinite plate with such an inhomogeneity. The solution involves two conformal maps, one from the
inside and the second from the outside of the unit circle to the inside, and respectively outside, of the
inhomogeneity. The method provides a solution by matching the conformal maps on the boundary between the
inhomogeneity and the surrounding material. This matching converges well only for relatively mild distortions
of the unit circle due to reasons which will be discussed in the article. We provide a comparison of the present
result to known previous results.
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I. INTRODUCTION

Elasticity theory in homogeneous materials is a well de-
veloped subject. Much less is known about inhomogeneous
materials where the solution of the basic equations of elas-
ticity becomes very involved. In this paper we focus on a
material which consists of one finite area �of arbitrary shape�
in which a material with given elastic properties is embedded
in an infinite sheet of material of different elastic properties.
This situation is known as “elastic inhomogeneity” and it
appears in a variety of geophysical �1� and solid mechanical
contexts, with examples furnished by two-phase amorphous
alloys �2�. A method for solving such problems in both two
and three dimensions was first formulated by Eshelby �3�. A
somewhat simplified method uses a Taylor series expansion
for the displacement field and then finds a solution for a
finite number of elements in the series by means of an inte-
gral equations; cf. �4�. The main difficulty in using these
methods is that the calculation involves a surface �volume�
integral over the area �volume� of the inhomogeneity. When
the shape of the inhomogeneity is relatively simple �say a
square or a circle� this is straightforward; inclusions of arbi-
trary shapes are difficult to deal with. Therefore, methods
involving conformal mappings where the boundary is
mapped onto the unit circle are preferred. The use of a con-
formal map discards the need for a complicated surface in-
tegral. An analytical solution for an elliptical inhomogeneity
using a conformal map was found by Hardiman �5�. In other
cases the problem was solved for small perturbations to the
circle �6�. A related problem, referred to as the “Eshelby
inclusion” was solved by Ru �7�. This problem deals with an
infinite homogeneous elastic body that contains a subdomain
undergoing a uniform stress-free strain. The difference from
our problem is that the subdomain has the same elastic prop-
erties as the infinite matrix �for more details, see �3��.

Mathematically, the present problem is set as follows; see
Fig. 1. A patch of material of type 1 occupies an area � and
is delineated by a sharp boundary which will be denoted ��.
The rest of the infinite plane is made of material of type 2.
The material is subjected to forces at infinity �and see below

the precise boundary conditions�, and is therefore deformed.
Before the deformation each point of the material is assigned
a point r in the two-dimensional plane. The forces at infinity
result in a displacement of the material points to a new equi-
librium position r�. The displacement field u�r� is defined as
�8�

u�r� � r� − r . �1�

The strain field is defined accordingly as

�ij � ��iu j + � jui�/2. �2�

In the context of linear elasticity in isotropic materials one
then introduces the stress field according to Hook’s law

�ij = 2�i�ij + �i�ij�kk, �3�

where �i=�i / �1 /2	i−1�. �i and 	i take on different values
�1, 	1 in � and �2, 	2 in the rest of the material. In equilib-
rium the stress tensor should be divergenceless ��ij /�xj =0 at
each point in the sheet. By defining the stress �or Airy� po-
tential U:

FIG. 1. �Color online� Region �.
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�xx =
�2U

�y2 , �xy = −
�2U

�x�y
, �yy =

�2U

�x2 , �4�

the former equation for the stress tensor becomes a partial
differential equation for the stress potential:

�2�2U�x,y� = 0. �5�

This equation, which is known as the bi-Laplace or the bi-
harmonic equation, is conveniently solved as a nonanalytic
combination of analytic functions. To this aim we introduce
the complex notation z�x+ iy, and note the general solutions
of Eq. �5� in the form

U�x,y� = Re�z*
̃�z� + ��z�� , �6�

where z*�x− iy and 
̃�z� and ��z� are any two analytic
functions. What remains to be done in any particular problem
is to find the unique analytic functions such that the stress
tensor satisfies the boundary conditions. This stress tensor is
determined by the two analytic functions as

�yy�x,y� = Re�2
̃��z� + z*
̃��z� + ���z�� ,

�xx�x,y� = Re�2
̃��z� − z*
̃��z� − ���z�� ,

�xy�x,y� = Im�z*
̃��z� + ���z�� . �7�

We define for convenience

�̃�z� = ���z� �8�

and then

�yy�x,y� = Re�2
̃��z� + z*
̃��z� + �̃��z�� ,

�xx�x,y� = Re�2
̃��z� − z*
̃��z� − �̃��z�� ,

�xy�x,y� = Im�z*
̃��z� + �̃��z�� . �9�

Note that the stress tensor is determined by derivatives of
the analytic functions, and not by the functions themselves.
This leaves us with some freedom. We can see that the trans-
formation


̃i → 
̃i + iCiz + i + i�i,

�̃i → �̃i + �i + i�i, �̃ � ��, �10�

leaves the stress intact. As we shall see below, not all of these
freedoms are true freedoms once we introduce the boundary
and continuity conditions. Since the elastic properties are
different inside and outside �, the potential functions will be

different in the two regions: 
̃1 and �̃1 which are defined on

� and 
̃2 and �̃2 which are defined on C \�. Nevertheless,
we will demand continuity of the physical fields. In particu-
lar the normal force

� · n = �xn + i�yn �11�

and the displacement u�r� must be continued across the in-
terface �by Newton’s third law� in the absence of surface

tension. Therefore, the continuity conditions are

�xn
�1� + i�yn

�1� = �xn
�2� + i�yn

�2�, �12�

ux
�1� + iuy

�1� = ux
�2� + iuy

�2�. �13�

The continuity conditions for the stress can be rewritten as

d

ds
� �U1

�x
+ i

�U1

�y
� =

d

ds
� �U2

�x
+ i

�U2

�y
� �14�

or, after integrating,

�U1

�x
+ i

�U1

�y
=

�U2

�x
+ i

�U2

�y
+ C , �15�

where C is a complex constant of integration. In terms of the
analytic functions, the condition �12� translates to �9�


̃�1��z� + z
̃��1�*�z� + �̃�1�*�z�

= 
̃�2��z� + z
̃��2�*�z� + �̃�2�*�z� + C , �16�

and the condition �13� becomes

��1
̃�1��z� − z
̃��1�*�z� − �̃�1�*�z��
�1

=
��2
̃�2��z� − z
̃��2�*�z� − �̃�2�*�z��

�2
, �17�

where �i= �3−	i� / �1+	i�.
In addition to these continuity conditions on �� we need

to specify boundary conditions at infinity. We choose

�xx��� = 0, �yy��� = ��, �xy��� = 0. �18�

II. SOLUTION IN TERMS OF CONFORMAL MAPS

Solutions to the problem of finding the stress field outside
a given domain using conformal maps were described for
example in �10�. Here we need to solve for the stress field
both inside and outside the given domain. In the following
we assume that the center of coordinates is inside � and the
point at infinity is outside �. Since the stress functions are
analytic in their domains of definition, we can expand them
in the appropriate Laurent series, which for the functions
with superscript �1� is of the form


̃�1��z� = 
̃0
�1� + 
̃1

�1�z + 
̃2
�1�z2 + ¯ ,

�̃�1��z� = �̃0
�1� + �̃1

�1�z + �̃2
�1�z2 + ¯ , �19�

i.e., we have no poles at the origin. For the outside domain
�functions with superscript �2�� the most general expansions
in agreement with the boundary conditions �18� are of the
form


̃�2��z� = 
̃1
�2�z + 
̃0

�2� + 
̃−1
�2�/z + 
̃−2

�2�/z2 + ¯ ,

�̃�2��z� = �̃1
�2�z + �̃0

�2� + �̃−1
�2�/z + �̃−2

�2�/z2 + ¯ , �20�

i.e., we have a pole of order 1 at infinity. Accordingly, the
leading terms of Eqs. �20� are determined by the boundary
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conditions. We now use one of the freedoms of the analytic
functions to eliminate the imaginary part of 
�2� and write


̃1
�2� =

��

4
, �̃1

�2� =
��

2
. �21�

The standard way to proceed �9� would be to substitute
the series expansions in the continuity conditions and find
the linear equations that determine all the coefficients by
equating terms of the same order in z. However this cannot
be done in general since the functions zn are not orthogonal
on arbitrary contours �� �11�. To overcome this, one maps
the regions � and C \� into the interior and exterior of the
unit circle, respectively. That is, we need two analytic, in-
vertible �and thus conformal� functions; one is

z = ���� , �22�

which maps the exterior of the unit circle into C \�, and the
other is

z = ���� , �23�

which maps the unit disk into �. Since they are both invert-
ible they have inverse functions which we denote

� = �−1�z� �24�

and

� = �−1�z� . �25�

Now we express the functions 
̃�i� and �̃�i� in terms of �
and � and then expand them on the boundary of the unit
circle. This expansion will be a Fourier series where the
powers of � or � satisfy the orthogonality relation:

1

2�
�

0

2�

eni�e−mi� = �n,m. �26�

We have here used ei� to represent either � or �. The or-
thogonality allows us to equate the coefficients of the series
term by term. We define


̃�2��z� � 
�2���−1�z��, �̃�z��2� � ��2���−1�z�� �27�

and


̃�1��z� � 
�1���−1�z��, �̃�1��z� � ��1���−1�z�� . �28�

We can expand 
i and �i in terms of � and � on the unit
circle. Since the original functions were analytic in the origi-
nal domains, the functions


�2���� � 
̃�2�������, ��2���� � �̃�2������� �29�

and


�1���� � 
̃�1�������, ��1���� � �̃�1������� �30�

are analytic inside and outside the unit disk, respectively.
Therefore, we can expand in terms of � and �:


�1���� = 
0
�1� + 
1

�1�� + 
2
�1��2 + ¯ ,

��1���� = �0
�1� + �1

�1�� + �2
�1��2 + ¯ , �31�


�2���� = 
1
�2�� + 
0

�2� + 
−1
�2��−1 + 
−2

�2��−2 + ¯ ,

��2���� = �1
�2�� + �0

�2� + �−1
�2��−1 + �−2

�2��−2 + ¯ . �32�

We now assume that the map of the exterior domain, �,
maps the point at infinity to infinity. That is, it will have a
Laurent series on the form

���� = F1� + F0 + F−1�−1 + F−2�−2 + ¯ . �33�

From this we get the following relations �after substituting
and taking the limit �→��:


1
�2� = F1

��

4
, �1

�2� = F1
��

2
. �34�

We can also use the last two freedoms to choose

̃0

�2�=−F0
̃1
�2� such that 
0

�2�=0. In the interior domain, the

functions 
̃�1� and �̃�1� also have five freedoms. However, the
requirement of continuity of the displacement field u across
the boundary �� removes three of these freedoms. This con-
tinuity was expressed by Eq. �13�. Applying the apparent
freedoms on the left-hand side �LHS� of that equation and
then subtracting the resulting equation from Eq. �13� we find
the three conditions

C1 = 0, �11 = �1, �1�1 = − �1. �35�

Using the remaining two freedoms, we can eliminate the
constant term in the expansion of ��1� by setting �0

�1�=0.
Note that this is possible only when we choose ���� such
that ��0�=0. We may always define our mapping � such
that this is satisfied. In terms of the conformal maps we
transform the boundary conditions into


�1���� +
����

��*���

��1�*��� + ��1�*���

= 
�2���� +
����

��*���

��2�*��� + ��2�*��� , �36�

1

�1
	�1
�1���� −

����
��*���


��1�*��� − ��1�*���

=

1

�2
	�2
�2���� −

����
��*���


��2�*��� − ��2�*���
 .

�37�

III. METHOD OF SOLUTION

At this point we need to substitute the expansions
�31�–�33� and an expansion similar to Eq. �33� for ���� into
Eqs. �36� and �37� and solve for the coefficients 
k

�i� and �k
�i�.

To understand how to do this in principle we write the ex-
panded equations �31� and �32� in an abstract form

�
k=−�

�

pk�
k = �

m=−�

�

qm�m, �38�

where pk are linear combinations of the coefficients 
n
�1� and

�n
�1� whereas qm are linear combinations of 
n

�2� and �n
�2�. As
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this equation stands we cannot use the orthogonality relation
Eq. �26�. Therefore, we expand moments of � in terms of �
in the form

����m = �
n=−�

�

an,m�n. �39�

We now insert this expression in Eq. �38�,

�
k=−�

�

pk�
k = �

m=−�

�

�
n=−�

�

qman,m�n �40�

and equate the coefficients of same powers to achieve a set
of linear equations for the coefficients of 
�i� and ��i�. The
actual algebraic manipulations that are involved in reaching
a finite set of linear equations are presented in the Appendix.

Needless to say, when we derive a finite set of equations
we lose precision. To see this we note that to get the right
number of equations for the number of unknowns �see the

Appendix� we need to truncate the summations on the LHS
and the RHS of Eq. �40� at the same finite N, i.e.,

�
k=−N

N

pk�
k = �

m=−N

N

�
n=−N

N

qman,m�n. �41�

For a precisely circular inclusion this truncation introduces
no loss of information. For this particular shape the expan-
sion Eq. �39� has only one term with n=m, i.e., an,m=�n,m.
Obviously, when the inclusion shape deviates from the circle,
the representation of �m in Fourier space deviates from a
delta function and it becomes more spread. An example of
this phenomenon is presented in Fig. 2 for an inclusion in the
form of an ellipse with aspect ratio of about 1.5. The upper
panel shows the parametrization of the outer mapping as
function of that of the inner, arg��−1������. In the lower
panel we show the power spectrum �an,m�2 of the moments
m=1 and m=25 of the function in the upper panel. If we
truncate the expansion at the dashed line N=n=25, we lose
high frequency information for the higher moments. This
loss of informaion will lead to stress field calculations which
are less accurate.

Arg(ω)

A
rg

(
Φ

−1
(

Λ
(ω

)
))

0 π 2π

0
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2π

Ω

n

|a n
,m

|2

m=1
m=25
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FIG. 2. �Color online� In the upper panel, we show the relation
between the mapping of the inner and outer domains of the ellipse
drawn in inset. The ellipse is the same as the one used in Figs. 4 and
7. Specifically, we have plotted the parametrization of the outer
mapping as a function of that of the inner, arg��−1������. In the
lower panel we show the power spectrum �an,m�2 of the moments
m=1 and m=25 of the function in the upper panel.
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FIG. 3. �Color online� Field lines of the two conformal map-
pings to the interior and exterior domains, respectively.
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FIG. 4. �Color online� Triangular shape.
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To see the difficulty in a pictorial way we can consider the
field lines of the conformal mappings for an inclusion that is
elongated in shape; see, for example, Fig. 3. The external
field lines concentrate at the convex parts of the inclusion,
whereas the internal field lines concentrate on the concave
parts. It becomes increasingly difficult to match field lines
since they make a large discontinuous jump when we go
from the interior to the exterior domain. Similarly, for the
ellipse in Fig. 2, when we increase the aspect ratio of the
ellipse, the slope in the steep parts of arg��−1������ be-
comes even larger, requiring higher order frequencies in our
expansions. Eventually for large aspect ratios, our method
will break down.

IV. OBTAINING THE CONFORMAL MAPS

In all the calculations we assumed that the conformal
maps ���� and ���� are available. For arbitrary inclusion
shapes this is far from obvious, and special methods are nec-
essary to obtain these maps. An efficient method to obtain
the conformal map from the exterior of the unit circle to the
exterior of an arbitrary given shape had been discussed in
great detail in �12�. In the present case we use a slightly
different method namely the geodesic algorithm �13�. This
method, like the former one, is based on the iterations of a
generic conformal map �� defined by a set of parameters �.
We then construct the conformal map to an arbitrary shape
by an appropriate choice of parameters �. In the geodesic
algorithm, we discretize the interface of the inclusion by a
sequence of points �zkk=0

n . The points appear sequentially in
the positive direction of the interface �see Figs. 4 and 5�.

We now briefly summarize how to construct the confor-
mal map �see �13��. First we construct iteratively the inverse
map that brings the interior of the inclusion to the upper half
plane and the interface to the real axis. The conformal map to
the shape then follows directly from the inverse. The con-
struction is done in three steps. In the first step, we move one
point to infinity and another to the center of coordinates, e.g.,
z0 and z1, respectively. For that purpose we use the mapping,

�1�z� = i�z − z1

z − z0
.

In the next step we find a map that connects z2 to the real
axis by a semicircular arc. The inverse of this mapping, ��2

,
brings z2 to the real axis

��2
�z� =� z

1 − z/a
+ b2,

where �2=�1�z2� and a= ��2�2 /Re �2 and b= ��2�2 / Im �2. Itera-
tively, we apply this mapping to all the points z3 , . . . ,zn,
where in general

�k = ��k−1
� ¯ � �1�zk� .

In the third and last step we unfold the remaining part of the
interior to the whole upper half-plane by the map

�n+1 = − � z

1 − z/�n+1
�2

,

with

�n+1 = ��n
� ¯ � �1�z0� .

The conformal map � from the upper half-plane to the
interior domain and from the lower half-plane to the exterior
domain is then given by

� = �1
−1 � ��2

−1 � ¯ � ��n

−1 � �n+1
−1 .

From the conformal map � we easily construct the map
� from the unit circle to the inclusion. In Fig. 6 we illustrate
how this is done.

V. EXAMPLES

In order to check the validity of our method we calculated
the stress fields created by inhomogeneities with two differ-
ent geometries: An ellipse with semiaxes 0.9 and �1+0.92

1111 2222 3333 4444 5555 6666 7777 8888 9999 10101010
−0.03−0.03−0.03−0.03

−0.025−0.025−0.025−0.025

−0.02−0.02−0.02−0.02

−0.015−0.015−0.015−0.015

−0.01−0.01−0.01−0.01

−0.005−0.005−0.005−0.005

0000

x (m)x (m)x (m)x (m)

σσσσ xxxxxxxx
(N

/m
(N

/m
(N

/m
(N

/m
2222 ))))

FIG. 5. �Color online� �xx evaluated along the positive real axis
�ellipse�.

η1(ω) =
1 + αω
ω + α

η2(η1) = i
η1 − 1

η1 + 1

z = Ψ(η2)

FIG. 6. Sketch of the construction of the conformal map from
the exterior unit circle to the exterior of the inclusion. We choose 
such that infinity is mapped to infinity. Similarly, for the interior
map we choose  such that zero is mapped to zero.
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�aspect ratio of about 1.5� and a smoothed triangular curve
1.75z+0.2 /z2 �see Fig. 4�. In the case of the elliptical inho-
mogeneity we compared our method to the known analytical
solution which was first obtained by Hardiman �5� in 1954.
In the example below, the boundary conditions at infinity
were set to ��=−1 N /m2. The shear moduli used were
�1=1 N /m2 for the inhomogeneity and �2=1.2 N /m2 for
the matrix. The Poisson ratio was taken to be 	=0.3 for both
inhomogeneity and matrix. In Figs. 4 and 7 we can see the
components of the stress field calculated outside the ellipse.

The line is the stress calculated using Hardiman’s solution
and the spots correspond to the values obtained by our
method. Similarly, we have calculated the stress field outside
the triangularlike inhomogeneity �Figs. 8 and 9�.

VI. CONCLUDING REMARKS

In comparing our approach to other available algorithms,
for example finite elements approximations to the equations

of linear elasticity, we should stress that our approach works
equally well for compressible and incompressible materials,
There is no problem in taking the incompressible limit as the
Poisson ratio approaches 1. This is not the case for finite
elements methods. While the examples shown above worked
out very well, indicating that the proposed algorithm is both
elegant and numerically feasible, unfortunately it deteriorates
very quickly when the shape of the inhomogeneity deviates
strongly from circular symmetry. The difficulty in matching
the two conformal maps is significant, as can be gleaned
from Figs. 2 and 3. One could think that the problem could
be overcome in principle by increasing the numerical accu-
racy, but in practice, when the inhomogeneity has horns,
spikes, or deep fjords, the difficulties becomes insurmount-
able. Similar difficulties in another guise are however ex-
pected when any other analytic or semianalytic method is
used, leaving very contorted inhomogeneities as a remaining
challenge for elasticity theory.
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APPENDIX: EXPLICIT CALCULATION

Starting from Eqs. �36� and �37� we write the series ex-
pansions in a compact form:


1��� = �
k=0

�


k
1�k, �1��� = �

k=1

�

�k
1�k,

����
��*���

= �
k=−�

�

bk�
k,

�A1�


2��� = �
k=−�

1


k
2�k, �2��� = �

k=−�

1

�k
2�k,

0 2 4 6 8 10
−1

−0.99

−0.98

−0.97

−0.96
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−0.94

y (m)

σ yy
(N

/m
2 )

FIG. 7. �Color online� �yy evaluated along the positive imagi-
nary axis �ellipse�.
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FIG. 8. �Color online� �xx evaluated along the positive real axis
�triangle�.
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FIG. 9. �Color online� �yy evaluated along the positive imagi-
nary axis �triangle�.
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����
��*���

= �
k=−�

�

ck�
k, �A2�

where we have eliminated the zero terms in �1 because of
the freedom. Substituting

�
k=0

�


k
1�k + � �

n=−�

�

bn�n��
k=0

�

k

k

1*�1−k + �
k=1

�

�
k

1*�−k

= �
k=−�

−1


k
2�k + � �

n=−�

�

cn�n� �
k=−�

−1

k

k

2*�1−k + �
k=−�

0

�
k

2*�−k

+ 
1
2� + ���������
1

2* +
�1

2*

�
.

We can also expand


1
2� +

����
��*���


1
2* +

�1
2*

�
= F1

��

4
� +

����
��*���

F1��4 +
��

2

F1

�

= �
n=−�

�

fn�n. �A3�

Substituting and changing the indices of summation, m=1
−k+n which leads to n=m+k−1, we get

�
m=0

�


m
1 �m + �

k=1

�

�
m=−�

�

kbm+k−1

k

1*�m + �
m=−�

−1

�−m

1* �m

= �
m=−�

−1


m
2 �m + �

k=−�

−1

�
m=−�

�

kcm+k−1

k

2*�m

+ �
m=0

�

�−m

2* �m + �
m=−�

�

fm�m. �A4�

In order to find the relations between the coefficients we
need both sides to be expressed in the same Fourier harmon-
ics. Therefore, we need to expand

���� = �„����…

in a Fourier series. The condition for this to be expanded in
a Fourier series is that ���� is L2 ( i.e., �−�

� ���eı���2d��� on
the segment �−� ,��). If that is the case, we can expand

���� = �
k=−�

�

ak�
k.

Actually, it is found to be more convenient to expand powers
of � in a Fourier series:

����m = �
n=−�

�

an,m�n, �A5�

where �=eı� and �−�
� ���eı��m�2d��� on the segment

�−� ,��

�
n=0

�


n
1�n + �

k=1

�

�
n=−�

�

kbn+k−1
k
1*�n + �

n=−�

−1

�−n
1*�n

= �
n=−�

� 	 �
m=−�

−1


m
2 an,m + �

k=−�

−1

k� �
m=−�

�

cm+k−1an,m�
k
2*

+ �
m=0

�

�−m
2* an,m + �

m=−�

�

fman,m
�n. �A6�

Define

Bn,k = �
m=−�

�

cm+k−1an,m �A7�

and

Cn = �
m=−�

�

fman,m. �A8�

Substituting

�
n=0

�


n
1�n + �

k=1

�

�
n=−�

�

kbn+k−1
k
1*�n + �

n=−�

−1

�−n
1*�n

= �
n=−�

� 	 �
m=−�

−1


m
2 an,m + �

k=−�

−1

kBn,k
k
2* + �

m=0

�

�−m
2* an,m

+ Cn
�n. �A9�

Using the linear independence of the �n’s with respect to the
Fourier integral, and “cutting” the infinite series at some
number N, we get a set of linear equations which is of the
form

M̂1v = c , �A10�

where v is the vector of coefficients �
’s and �’s�, M̂ is a
�4N+2�� �2N+1� matrix of constants, and c is the Cn’s.

Next, we substitute the expansions in the continuity equa-
tion for the displacement:

1

�1
	�1
1��� −

����
��*���


�1*��� − �1*���

=

1

�2
	�2
2��� −

����
��*���


�2*��� − �2*���
 .

Substituting

1

�1
	�1�

k=0

�


k
1�k − � �

n=−�

�

bn�n��
k=1

�

k
k
1*�1−k − �

k=1

�

�k
1*�−k


=
1

�2
	�2 �

k=−�

−1


k
2�k − � �

n=−�

�

cn�n� �
k=−�

−1

k
k
2*�1−k

− �
k=−�

0

�k
2*�−k + �2
1

2� −
����

��*���

1

2* −
�1

2*

�

 . �A11�

We can also expand
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�2
1
2� −

����
��*���


1
2* −

�1
2*

�

= �2F1
��

4
� −

����
��*���

F1
��

4
−

��

2

F1

�

= �
n=−�

�

gn�n. �A12�

Substituting and changing the indices of summation, m=1
−k+n which leads to n=m+k−1,

1

�1
	�1�

k=0

�


k
1�k − �

k=1

�

�
n=−�

�

kbm+k−1

k

1*�m − �
k=1

�

�
k

1*�−k

=

1

�2
	�2 �

m=−�

−1


m
2 �m − �

k=−�

−1

�
m=−�

�

kcm+k−1

k

2*�m

− �
m=0

�

�−m

2* �m + �
m=−�

�

gm�m
 . �A13�

Expanding ���� as before and defining

Dn = �
m=−�

�

gman,m, �A14�

we get

1

�1
	�1�

n=0

�


n
1�n − �

n=−�

�

�
k=1

�

kbn+k−1
k
1*�n − �

n=1

�

�n
1*�−n


=
1

�2
�

n=−�

� 	�2 �
m=−�

−1


m
2 an,m − �

k=−�

−1

kBm,k
k
2* − �

m=0

�

�−m
2* an,m

+ Dn
�n. �A15�

When “cutting” the infinite series in the same way, we get
again a matrix equation �with the same dimensions� of the
form

M̂2v = d . �A16�

Combining Eqs. �A10� and �A17� we get a �4N+2�� �4N
+1� matrix equation:

M̂v = e , �A17�

where

M̂ = M̂1 � M̂2 �A18�

and

e = c � d . �A19�
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